Прежде чем проверять динамики, колонки или наушники, убедитесь в том, что ваш усилитель (или стационарный, или встроенный в активные колонки, или звуковой карты компьютера) имеет достаточно хорошие технические характеристики (параметры). Т.е. насколько прямолинейна и широка его АЧХ , может ли он выдавать все частоты с одинаковым уровнем, без завала по низким частотам (чем часто грешат усилители низкого качества).

Заодно можно определить, развивает ли он заявленную изготовителем максимальную мощность (Pmax) и какое выходное сопротивление (Rвых) имеет.

Методика проверки амплитудно-частотной характеристики

Для измерения амплитудно-частотной характеристики (АЧХ ) в один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите, сопротивлением 5-10ом. Парал­лельно резистору подключите вольтметр пере­менного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1вольт (1000 милли­вольт), далее, не меняя уровень сигнала, уменьшайте частоту генератора (в диапа­зоне 1000-100 герц кнопкой "-100", в диапазоне 100-20 герц кнопкой "-10") начиная от 1000гц. и до 20гц. включительно (при этом регуляторы тембра на усилителе должны стоять в среднем положении или отключены, т.е. его АЧХ должна быть прямолинейна (горизон­тальна).

Напряжение на выходе усилителя НЕ ДОЛЖНО меняться более чем на ±2 децибела (или в 1,25 раза), но чем меньше, тем лучше (в нашем случае, оно должно находиться в пределах между 0,8-1,25 вольт, или 800-1250 милли­вольт). Идеальный вариант - все частоты выдаются с одинаковым уровнем.

Ну а если завал напряжения по низким частотам составит 2 и более раз, что соответ­ствует 6 децибел и более (т.е. напряжение опустится до 0,5 вольт и менее), то ваши колонки никогда не смогут звучать во всей своей красе. К тому же, при нелинейной характеристике усилителя вы не сможете точно определить резонансную частоту динамиков. Пример такой нелинейной АЧХ показан на рисунке слева (см. синюю кривую).

Точно также проверяется и второй канал усилителя. В случае значительного спада сигнала на низких частотах желательно поменять усилитель на более качественный.

Измерение выходного сопротивления усилителя

От величины выходного сопротивления зависят коэффициент демпфирования и интер­модуляционные искажения, также оно напрямую влияет на общую добротность системы. Выходное сопротивление усилителя мощности должно находиться в пределах 1/10-1/1000 от сопротивления нагрузки и у современных усилителей имеет величину порядка 0,01-0,1 Ом.

Для его измерения в качестве нагрузки усилителя проводниками подключите, сопротивлением 4 или 8ом соответствующей мощности. Параллельно выходу усилителя подключите вольтметр переменного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение в пределах от 1 до 5 вольт.

Вначале нужно замерить выходное напряжение усилителя на холостом ходу (без нагрузки). Потом проделать то же самое, нагрузив его на резистор. Все величины, включая Rнагр, нужно измерять как можно точнее. Выходное сопротивление вычисляется по формуле
Rвых=[(Uхх/Uнагр)-1]×Rнагр или
Rвых=[(Uхх-Uнагр)/Uнагр]×Rнагр. пример: [(5-4,9)/4,9]×8=0,163ом.

Таким образом можно определить выходное сопротивление и на втором канале, и на любой частоте.

Измерение максимальной мощности

Некоторые пользователи хотят знать, какую мощность реально выдают их усилители в нагрузку, не доверяя характеристикам, заявленным производителями. Это можно сделать, но вам понадобятся:

  1. мощный нагрузочный резистор
  2. генератор звуковых частот
  3. вольтметр переменного напряжения
  4. осциллограф.

Самое сложное, это купить или самостоятельно изготовить мощный нагрузочный резистор и найти осциллограф. В крайнем случае, в качестве осциллографа можно использовать компьютер или ноутбук с программой "Виртуальный осциллограф" из (объём 0,3 Мб.). Подробное описание его работы и схема адаптера (делитель напряжения для согласования входа звуковой карты компьютера с источником исследуемого напряжения) имеются в справке программы. Резистор можно изготовить из спирали древнего утюга, электрической плитки или тепловентилятора.

В один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите, сопротивлением, соответствующим расчётному сопротивлению нагрузки вашего усилителя. Оно указывается в инструкции на аппаратуру и обычно составляет 8 или 4ом. Мощность резистора должна быть достаточной, чтобы он не сгорел во время работы, т.е. не меньше предполагаемой выходной мощности усилителя (если усилитель заявлен на 100 ватт на канал, мощность резистора должна быть 100 ватт и больше).

Параллельно резистору подключите вольтметр переменного тока (лучше стрелочный, он показывает действующее значение напряжения), а также осциллограф и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1 вольт (1000 милли­вольт). Наблюдайте форму сигнала на осциллографе, далее, не меняя частоту, увеличивайте амплитуду сигнала.

Синусоида будет увеличиваться по высоте, не искажая свою форму, но в какой-то момент произойдёт её клиппирование, она как бы упрётся в "потолок и пол", вместо закруглённой, её верхняя и/или нижняя части станут горизонтальными, как на рисунке справа, т.е. начнётся ограничение сигнала по амплитуде. Уменьшите амплитуду таким образом, чтобы сигнал был на грани клиппирования (ещё сохранял закругленную форму). Напряже­ние, показанное в этот момент на вольтметре, равно Umax. По формуле P=U²/R рассчитайте максимальную мощность усилителя.

Например, Umax=21v. R=4om. Pmax=21²/4=110ватт. Если R=8ом, то Рmax=55ватт.

Таким же способом можно проверить максимальную выходную мощность на нижней частоте АЧХ усилителя (20 герц.), или на нижней частоте частотного диапазона, указанного для ваших колонок, например 40, 45 или 50 герц. Ограничение синусоиды по амплитуде в идеале должно происходить строго симметрично, на обоих полуволнах сигнала.

Аналогично замерьте мощность во втором канале усилителя.

Нравится

ВЫЙТИ в оглавление

Copyright © Полубоярцев А.В.

Выходное сопротивление можно определить двумя способами.

1) Отключить сопротивление нагрузки. Замкнуть активный источник входного сигнала. Подвести к выходным зажимам усилителя переменное напряжение . Рассчитать переменный ток , потребляемый от источника . Определить выходное сопротивление усилителя . Схема замещения усилителя, реализующая этот способ, приведена на рис.2.11.

Рисунок 2.11 - Схема замещения усилителя, для расчета R Вых

2) Определение выходного сопротивления по нагрузочной характеристике.

Выходную цепь усилителя можно представить следующей моделью, в которой выходная цепь транзистора представлена источником ЭДС (Рис. 2.12).

Рисунок 2.12 - Схема замещения выходной цепи усилителя

Нагрузочная характеристика усилителя, определяется зависимостью напряжения на нагрузке от тока нагрузки, будет иметь вид, приведенный на рис.2.13.

Рисунок 2.13 - Нагрузочная характеристика усилителя

Для выходной цепи усилителя в режимах холостого хода (R Н =¥) и короткого замыкания (R Н =0) определим значения U Нхх и I КЗ :

Из нагрузочной характеристики следует, что выходное сопротивление усилителя:

При условии, что , можно записать: .

Следовательно, результаты определения выходного сопротивления, полученные первым и вторым способами, одинаковы.

Поскольку входное и выходное сопротивления схемы с ОЭ соизмеримы, то возможно последовательное включение каскадов усилителей с ОЭ при их удовлетворительном согласовании. Так, например, для двухкаскадного усилителя с коэффициентами усиления К 1 и К 2 и равенством R Вых1 =R Вх2 , получим общий коэффициент усиления усилителя .

Выводы:

Схема усилителя напряжения (ОЭ) имеет примерно равные входное и выходное сопротивления, что позволяет согласовывать по напряжению входное сопротивление последующего каскада с выходным сопротивлением предыдущего при их последовательном включении в многокаскадных усилителях. Схема с ОБ не позволяет выполнять такое включение, так как . Для последовательного включения каскадов с ОБ между ними необходимо включать согласующие каскады, которые строятся по схеме с ОК (см. разд.2.3).

Коэффициенты усиления схем с ОЭ и ОБ по напряжению K U >>1 (десятки) и отличаются лишь фазовыми соотношениями j ОЭ =180°, j ОБ =0°.

Коэффициенты усиления по току для схемы с ОЭ (K I >>1), а для схемы с ОБ (K I <1). Поскольку коэффициент усиления по мощности K P =K U ×K I , то схема с ОЭ имеет наибольший коэффициент.

Схема усилителя напряжения с ОЭ находит более широкое применение в электронике, однако схема с ОБ, несмотря на ряд указанных недостатков, используется в соответствии со своими преимуществами. К ним следует отнести наиболее высокую температурную стабильность и меньшие нелинейные искажения (см. разд. 5).


8 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ RC-УСИЛИТЕЛЕЙ
ЗВУКОВЫХ ЧАСТОТ

Важнейшими техническими показателями усилителя являются :

коэффициенты усиления (по напряжению, току и мощности), входное и выходное сопротивления, выходная мощность, коэффициент полезного действия, номинальное входное напряжение (чувствительность), диапазон усиливаемых частот, динамический диапазон амплитуд и уровень собственных помех, а также показатели, характеризующие нелинейные, частотные и фазовые искажения усиливаемого сигнала.

Коэффициенты усиления . Коэффициентом усиления по напряжению или просто коэффициентом усиления К , называется величина, показывающая, во сколько раз напряжение сигнала на выходе усилителя больше, чем на его входе:

К = .

Значение коэффициента усиления К у различных усилителей напряжения может иметь величину порядка десятков и сотен. Но и этого в ряде случаев недостаточно для получения на выходе усилителя сигнала требуемой амплитуды. Тогда прибегают к последовательному включению ряда усилительных каскадов:

К = К 1К 2 ∙ К n.

Коэффициент усиления представляет собой безразмерную величину. Учитывая, что в современных усилительных схемах коэффициент, выраженный в безразмерных единицах, получается довольно громоздким числом, в электронике получил распространение способ выражения усилительных свойств в логарифмических единицах – децибелах (дБ ). Коэффициент усиления, выраженный в децибелах, равен

К = 20lg = 20lg К

Обратный переход от децибел к безразмерной величине производится при помощи выражения

К =
.

Если принять К= 1, то

К =
=
10= 1,12.

Следовательно, усиление равно одному децибелу, если напряжение на выходе усилителя в 1,12 раза (на 12%) больше, чем напряжение на входе. Коэффициент усиления многокаскадного усилителя, выраженный в децибелах, представляет собой сумму коэффициентов усиления отдельных каскадов усиления, выраженных в тех же единицах:

20lg К = 20lg К 1 + 20lg К 2 + …+20lg К n

Кроме коэффициента усиления по напряжению, пользуются коэффициентами усиления по току и по мощности, которые также могут быть выражены в децибелах. Например, если мощность сигнала на входе усилителя имела значение Р вх, а затем повысилась до Р вых, то коэффициент усиления по мощности в децибелах можно найти по формуле

.

Следует помнить, что для перехода к децибелам при логарифме отношения мощностей ставится множитель 10, а при логарифме отношения напряжений или токов ставится множитель 20. Это объясняется тем, что мощность пропорциональна квадрату напряжения или квадрату тока

.

Входное и выходное сопротивления

Усилитель можно рассматривать как активный четырехполюсник, к входным зажимам которого подключается источник усиливаемого сигнала, а к выходным сопротивление нагрузки. На рисунке показана одна из возможных эквивалентных схем усилительного каскада. Источник входного сигнала показан в виде генератора напряжения с э.д.с. Е вх, имеющего внутреннее сопротивление R г. Со стороны выхода усилитель представлен в виде генератора напряжения с э.д.с. Е вых и внутренним сопротивлением R вых. Усилитель одновременно является нагрузкой для источника сигнала и источником сигнала для внешней нагрузки R н, причем нагрузкой усилителя может быть не только оконечное устройство (потребитель), но и вход следующего каскада усилителя.

Входное сопротивление усилителя в любом случае представляет собой сопротивление между входными зажимами усилителя. Оно равно

Выходное сопротивление R вых определяют между выходными зажимами усилителя при отключенном сопротивлении нагрузки R н.

В зависимости от соотношения внутреннего сопротивления источника R г и входного сопротивления усилителя R вх источник сигнала может работать в режиме:

холостого хода (R вх >> R г), короткого замыкания (R вх << R г), согласования (R вх ≈ R г).

Аналогичные режимы работы возможны и для выходной цепи:

(R н >> R вых) – холостой ход; (R н << R вых) – короткое замыкание; (R н >> R вых) – согласование.

В соответствии с этим различают как для входной, так и для выходной цепи режимы усиления напряжения, тока и мощности.

Входное и выходное сопротивление является очень важным в электронике.

Ладно, начнем издалека… Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие “блок”. Например, источник питания, собранный по этой схеме:

состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.

В красном блоке мы получаем постоянное напряжение , а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:


Блочная схема – это условное деление. В этом примере мы могли бы даже взять трансформатор , как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод “от простого к сложному” полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем – готовое устройство, например, телевизор.

Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.

– Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?

Да! Именно на это нацелена сейчас современная электроника;-) Микроконтроллеры и конструкторы, типа Arduino , добавляют еще больше гибкости в творческие начинания молодых изобретателей.

На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением .

Думаю, все помнят, что такое сопротивление и что такое . Резистор хоть и обладает сопротивлением, но это активное сопротивление . Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением . Но что такое ? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление – это сопротивление какого-то входа, а выходное – сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления ? А вот “прячутся” они в самих блоках радиоэлектронных устройств.

Входное сопротивление

Итак, имеем какой-либо блок. Как принято во всем мире, слева – это вход блока, справа – выход.


Как и полагается, этот блок используется в каком-нибудь радиоэлектронном устройстве и выполняет какую-либо функцию. Значит, на его вход будет подаваться какое-то входное напряжение U вх от другого блока или от источника питания, а на его выходе появится напряжение U вых (или не появится, если блок является конечным).


Но раз уж мы подаем напряжение на вход (входное напряжение U вх ), следовательно, у нас этот блок будет кушать какую-то силу тока I вх.


Теперь самое интересное… От чего зависит I вх ? Вообще, от чего зависит сила тока в цепи? Вспоминаем закон Ома для участка цепи :

Значит, сила тока у нас зависит от напряжения и от сопротивления. Предположим, что напряжение у нас не меняется, следовательно, сила тока в цепи будет зависеть от… СОПРОТИВЛЕНИЯ. Но где нам его найти? А прячется оно в самом каскаде и называется входным сопротивлением .


То есть, разобрав такой блок, внутри него мы можем найти этот резистор? Конечно же нет). Он является своего рода сопротивлением радиоэлементов, соединенных по схеме этого блока. Скажем так, совокупное сопротивление.

Как измерить входное сопротивление

Как мы знаем, на каждый блок подается какой-либо сигнал от предыдущего блока или это может быть даже питание от сети или батареи. Что нам остается сделать?

1)Замерить напряжение U вх, подаваемое на этот блок

2)Замерить силу тока I вх, которую потребляет наш блок

3) По закону Ома найти входное сопротивление R вх.

Если у вас входное сопротивление получается очень большое, чтобы замерить его как можно точнее, используют вот такую схему.


Мы с вами знаем, что если входное сопротивление у нас большое, то входная сила тока в цепи у нас будет очень маленькая (из закона Ома).

Падение напряжения на резисторе R обозначим, как U R

Из всего этого получаем…

Когда мы проводим эти измерения, имейте ввиду, что напряжение на выходе генератора не должно меняться!

Итак, давайте посчитаем, какой же резистор нам необходимо подобрать, чтобы как можно точнее замерять это входное сопротивление. Допустим, что у нас входное сопротивление R вх =1 МегаОм , а резистор взяли R=1 КилоОм . Пусть генератор выдает постоянное напряжение U=10 Вольт . В результате, у нас получается цепь с двумя сопротивлениями. Правило делителя напряжения гласит: сумма падений напряжений на всех сопротивлениях в цепи равняется ЭДС генератора.

В результате получается цепь:


Высчитываем силу тока в цепи в Амперах


Получается, что падение напряжения на сопротивлении R в Вольтах будет:

Грубо говоря 0,01 Вольт. Вряд ли вы сможете точно замерить такое маленькое напряжение на своем китайском .

Какой отсюда вывод? Для более точного измерения высокого входного сопротивления надо брать добавочное сопротивление также очень большого номинала. В этом случае работает правило шунта : на бОльшем сопротивлении падает бОльшее напряжение, и наоборот, на меньшем сопротивлении падает меньшее напряжение.

Измерение входного сопротивления на практике

Ну все, запарка прошла;-). Давайте теперь на практике попробуем замерить входное сопротивление какого-либо устройства. Мой взгляд сразу упал на Транзистор-метр . Итак, выставляем на блоке питания рабочее напряжение этого транзистор-метра, то есть 9 Вольт, и во включенном состоянии замеряем потребляемую силу тока. Как замерить силу тока в цепи, читаем в этой статье. По схеме все это будет выглядеть вот так:


А на деле вот так:


Итак, у нас получилось 22,5 миллиАмпер.

Теперь, зная значение потребляемого тока, можно найти по этой формуле входное сопротивление:

Получаем:

Выходное сопротивление

Яркий пример выходного сопротивления – это закон Ома для полной цепи , в котором есть так называемое “внутреннее сопротивление”. Кому лень читать про этот закон, вкратце рассмотрим его здесь.

Что мы имели? У нас был автомобильный аккумулятор, с помощью которого мы поджигали галогенную лампочку. Перед тем, как цеплять лампочку, мы замеряли напряжение на клеммах аккумулятора:


И как только подсоединяли лампочку, у нас напряжение на аккумуляторе становилось меньше.


Разница напряжения, то есть 0,3 Вольта (12,09-11,79) у нас падало на так называемом внутреннем сопротивлении r ;-) Оно же и есть ВЫХОДНОЕ СОПРОТИВЛЕНИЕ . Его также называют еще сопротивлением источника или эквивалентным сопротивлением .

У всех аккумуляторов есть это внутреннее сопротивление r , и “цепляется” оно последовательно с источником ЭДС (Е ).


Но только ли аккумуляторы и различные батарейки обладают выходным сопротивлением? Не только. Выходным сопротивлением обладают все источники питания. Это может быть блок питания , генератор частоты , либо вообще какой-нибудь усилитель.

В теореме Тевенина (короче, умный мужик такой был) говорилось, что любую цепь, которая имеет две клеммы и содержит в себе туеву кучу различных источников ЭДС и резисторов разного номинала можно привести тупо к источнику ЭДС с каким-то значением напряжения (E эквивалентное ) и с каким-то внутренним сопротивлением (R эквивалентное ).


E экв – эквивалентный источник ЭДС

R экв – эквивалентное сопротивление

То есть получается, если какой-либо источник напряжения питает нагрузку, значит, в источнике напряжения есть ЭДС и эквивалентное сопротивление, оно же .


В режиме холостого хода (то есть, когда к выходным клеммам не подцеплена нагрузка) с помощью мультиметра мы можем замерить ЭДС (E ). С замером ЭДС вроде бы понятно, но вот как замерить R вых ?

В принципе, можно устроить короткое замыкание . То есть замкнуть выходные клеммы толстым медным проводом, по которому у нас будет течь ток короткого замыкания I кз .


В результате у нас получается замкнутая цепь с одним резистором. Из закона Ома получаем, что

Но есть небольшая загвоздка. Теоретически – формула верна. Но на практике я бы не рекомендовал использовать этот способ. В этом случае сила тока достигает бешеного значения, да вообще, вся схема ведет себя неадекватно.

Измерение выходного сопротивления на практике

Есть другой, более безопасный способ. Не буду повторяться, просто скопирую со статьи закон Ома для полной цепи, где мы находили внутреннее сопротивление аккумулятора. В той статье, мы к акуму цепляли галогенную лампочку, которая была нагрузкой R . В результате по цепи шел электрический ток . На лампочке и на внутреннем сопротивлении у нас падало напряжение, сумма которых равнялась ЭДС.

Итак, для начала замеряем напряжение на аккумуляторе без лампочки.

Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе U r тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае E=12,09 Вольт.

Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем резисторе и на нагрузке, в данном случае на лампочке:


Сейчас на нагрузке (на галогенке) у нас упало напряжение U R =11,79 Вольт, следовательно, на внутреннем резисторе падение напряжения составило U r =E-U R =12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r :


Заключение

Входное и выходное сопротивление каскадов (блоков) в электронике играют очень важную роль. В этом мы убедимся, когда начнем рассматривать радиоэлектронных схем. Все качественные вольтметры и осциллографы также стараются делать с очень высоким входным сопротивлением, чтобы оно меньше сказывалось на замеряемый сигнал и не гасило его амплитуду.

С выходным сопротивлением все намного интереснее. Когда мы подключаем низкоомную нагрузку, то чем больше внутреннее сопротивление, тем больше напряжение падает на внутреннем сопротивлении. То есть в нагрузку будет отдаваться меньшее напряжение, так как разница осядет на внутреннем резисторе. Поэтому, качественные источники питания, типа блока питания либо генератора частоты, пытаются делать как можно с меньшим выходным сопротивлением, чтобы напряжение на выходе “не проседало” при подключении низкоомной нагрузки. Даже если сильно просядет, то мы можем вручную подкорректировать с помощью регулировки выходного напряжения, которые есть в каждом нормальном источнике питания. В некоторых источниках это делается автоматически.

2014-02-10T19:57

2014-02-10T19:57

Audiophile"s Software

ПРОЛОГ : Выходной импеданс выхода под наушники является одной из самых распространенных причин, почему одни и те же наушники могут звучать по-разному в зависимости от того, куда они включены. Этот важный параметр редко указывается производителями, но в то же время может послужить причиной существенных различий в качестве звучания и в значительной степени повлиять на совместимость наушников.

ВКРАТЦЕ: Всё, что вам действительно надо знать, это что большинство наушников лучше всего работают, если выходной импеданс устройства менее 1/8 импеданса наушников. Так, для примера, для 32-омных Grados выходной импеданс должен быть максимум 32/8 = 4 Ом. Etymotic HF5 - 16-омные, потому максимальный выходной импеданс должен быть равен 16/8 = 2 Ом. Если вы хотите быт уверены, что источник будет работать с любыми наушниками, удостоверьтесь, что его выходной импеданс менее 2 Ом.

ПОЧЕМУ ВЫХОДНОЙ ИМПЕДАНС ТАК ВАЖЕН? Как минимум по трем причинам:

  • Чем больше выходной импеданс, тем больше падение напряжения при меньших импедансах нагрузки. Это падение может быть достаточно большим, чтобы помешать «раскачать» низкоомные наушники до нужного уровня громкости. В качестве примера можно привести Behringer UCA202 с выходным импедансом 50 Ом. Он сильно проигрывает в качестве при использовании 16 - 32-омных наушников.
  • Импеданс наушников зависит от частоты. Если выходной импеданс намного больше нуля, это значит, что напряжение, падающее на наушниках, также будет изменяться с частотой. Чем больше выходной импеданс, тем больше неравномерность частотной характеристики . Разные наушники будут взаимодействовать по-разному (причем обычно непредсказуемо) с разными источниками. Иногда эти различия могут быть значительными и вполне ощутимыми на слух.
  • По мере того, как выходной импеданс увеличивается, уменьшается коэффициент демпфирования . Уровень басов, который рассчитывался для наушников при проектировании, при недостаточном демпфировании может существенно снизиться. Низкие частоты будут более гудящими и не такими четкими (размазанными). Переходная характеристика ухудшается, при этом страдает глубина басов (больше спад на низких частотах). Некоторым людям, вроде тех, кому нравится «теплый ламповый звук», такой недодемпфированный бас может даже прийтись по вкусу. Но в абсолютном большинстве случаев это даёт менее честный звук, чем при использовании низкоомного источника.

ПРАВИЛО ОДНОЙ ВОСЬМОЙ: Для минимизации каждого из вышеописанных эффектов необходимо всего лишь обеспечить выходной импеданс хотя бы в 8 раз меньший, чем импеданс наушников. Еще проще: поделите импеданс наушников на 8 и получите максимальный импеданс усилителя, позволяющий избежать слышимых искажений.

ЕСТЬ ЛИ КАКОЙ-ТО СТАНДАРТ ДЛЯ ВЫХОДНОГО ИМПЕДАНСА? Единственный такой стандарт, который я знаю - IEC 61938 (1996 г.). Он устанавливает требование к выходному импедансу в 120 Ом. Есть несколько причин, почему эти требования устарели, и вообще не являются хорошей идеей. В статье Stereophile о стандартном значении 120 Ом говорится буквально следующее:

«Кто бы это не написал, он явно живет в мире грез»

Должен согласиться. Возможно, значение в 120 Ом еще было приемлемо (и то, едва ли) до появления iPod и до того, как портативные устройства вообще обрели широкую популярность, но не более. Сегодня большая часть наушников разработана совершенно иначе.

ПСЕВДО-СТАНДАРТЫ: выходы под наушники большинства профессиональных установок имеют сопротивление 20 - 50 Ом. Не знаю ни одной, которая бы соответствовала 120 Ом, как в стандарте МЭК. Для оборудование потребительского класса значение выходного импеданса обычно лежит в пределах 0 - 20 Ом. За исключением некоторых ламповых и других эзотерических разработок, большая часть аудиофильского high-end оборудования имеет импеданс ниже 2 Ом.

ВЛИЯНИЕ iPOD: С тех пор, как в 1996-м было опубликован 120-омный стандарт, от низкокачественных кассетных плееров, через портативные CD-плееры, мы наконец перешли к повальному увлечению iPod"ами. Apple помогла сделать высокое качество портативным, и сейчас мы имеем в обороте как минимум полмиллиарда цифровых плееров, не считая телефоны. Практически все портативные музыкальные/медиа-плееры работают от одинарных аккумуляторных литий-ионных батарей. Эти батареи вырабатывают напряжение чуть более 3 вольт, что обычно даёт около 1 вольт (RMS) на выходе под наушники (иногда менее). Если вы поставите на выход сопротивление 120 Ом и воспользуетесь обычными портативными наушниками (сопротивление которых лежит в пределе 16 - 32 Ом), громкость воспроизведения скорей всего будет недостаточной. Кроме того, большая часть энергии батареи будет рассеиваться в виде тепла на 120-омном резисторе. Лишь малая часть мощности будет приходиться на наушники. Это серьезная проблема для портативных устройств, где очень важно продлить время работы аккумулятора. Более эффективным было бы подавать всю мощность на наушники.

КОНСТРУКЦИЯ НАУШНИКОВ: Так для какого же выходного импеданса компании-производители разрабатывают свои наушники? По состоянию на 2009 год было продано более 220 миллионов iPod"ов. iPod и аналогичные портативные плееры на рынке наушников подобны 800-фунтовым гориллам. Потому не удивительно, что большинство разработчиков стали создавать наушники таким образом, чтобы они были хорошо совместимы с iPod. Это значит, что они рассчитаны на работу с выходным импедансом менее 10 Ом. А практически все хай-эндовые полноразмерные наушники рассчитаны на источники, соблюдающие правило 1/8, или же имеющие импеданс близкий к нулю. Мне ни разу не встречались аудиофильские наушники предназначенные для домашнего использования, разработанные в соответствии с древним 120-омным стандартом.

ЛУЧШИЕ НАУШНИКИ ДЛЯ ЛУЧШИХ ИСТОЧНИКОВ: Если вы бегло ознакомитесь с наиболее обозреваемыми high-end усилителями для наушников и ЦАП"ами, вы обнаружите, что практически все они обладают очень низким выходным импедансом. Примерами являются продукты Grace Designs, Benchmark Media, HeadAmp, HeadRoom, Violectric, etc. Само собой, что большинство high-end наушников лучше всего проявляют себя в сочетании с такого же класса оборудованием. Некоторые из наиболее хорошо зарекомендовавших себя наушников изначально имеют низкий импеданс, включая различные модели от Denon, AKG, Etymotic, Ultimate Ears, Westone, HiFiMAN и Audeze. Все они, насколько я знаю, были разработаны для использования в сочетании с источником, имеющим низкий (в идеале нулевой) импеданс. Также и представитель Sennheiser сказал мне, что они разрабатывают свои аудиофильские и портативные наушники для источников с нулевым импедансом.

ВОПРОС АЧХ: Если выходной импеданс больше 1/8 импеданса наушников, будет наблюдаться неравномерность частотной характеристики. Для некоторых наушников, особенно арматурных (сбалансированный якорь) или мульти-драйверных, эти различия могут быть колоссальными. Вот, как 43 Ом выходного импеданса влияют на АЧХ Ultimate Ears SuperFi 5 - вполне ощутимая неравномерность в 12 дБ:

ВЫХОДНОЙ ИМПЕДАНС 10 ОМ: Кое-кто может взглянуть на пример выше и подумать, что такие значительные отличия проявляются лишь при сопротивлении в 43 Ом. Но множество источников имеет импеданс около 10 Ом. Вот те же наушники с 10-омным источником - все еще отчетливо слышимая неравномерность в 6 дБ. Такая кривая приводит к ослаблению басов, выраженному акценту на средних частотах, приглушенным высоким и нечеткой фазовой характеристике из-за резкого провала на 10 кГц, что может повлиять на стерео-панораму.

ПОЛНОРАЗМЕРНЫЕ SENNHEISER: Вот полноразмерные Sennheiser HD590 c повышенным импедансом, с тем же 10-омным источником. Теперь неравномерность выше 20 Гц лишь немногим более 1 дБ. Хотя 1 дБ - это не так уж много, неравномерность находится в области «гудящих» низов, где любой акцент крайне нежелателен:

КАК РАБОТАЕТ ДЕМПФИРОВАНИЕ: любая динамическая головка, будь то наушники или колонки, перемещается взад и вперед по мере воспроизведения музыки. Таким образом они создают звуковые колебания, представляя собой движущуюся массу. Законы физики гласят, что движущийся объект склонен оставаться в движении (т.е. обладает инерцией). Демпфирование же помогает избежать нежелательных перемещений. Если слишком не вдаваться в детали, недодемпфированный динамик продолжает двигаться тогда, когда он уже должен остановиться. Если же динамик передемпфирован (такое бывает редко), его возможности перемещаться соответственно подаваемому сигналу ограничены - представьте, что динамик пытается работать погруженным в кленовый сироп. Всего есть два способа демпфирования динамика - механический и электрический.

ПРЫГАЮЩИЕ ТАЧКИ: Механическое демпфирование подобно амортизаторам автомобиля. Они вносят сопротивление, потому если вы качнете машину, она не будет долго раскачиваться вверх-вниз. Но амортизация также добавляет жесткость, потому что не позволяет подвеске менять своё положение в полном соответствии с рельефом дороги. Потому здесь приходится искать компромисс: мягкие амортизаторы делают поездку более мягкой, но приводят к покачиванию, жесткие же делают поездку менее комфортной, но предотвращают раскачивание. Механическое демпфирование - это всегда компромисс.

ЭЛЕКТРИЧЕСКОЕ СОВЕРШЕННЕЕ: Есть лучший способ контролировать нежелательное перемещение диффузора, называется он электрическим демпфированием . Катушка и магнит в динамике взаимодействуют с усилителем для контроля перемещения диффузора. Этот тип демпфирования имеет меньше побочных эффектов и позволяет разработчикам создавать наушники с меньшим уровнем искажений и лучшим звучанием. Как подвеска автомобиля, способная более точно подстраиваться под рельеф дороги, оптимально демпфированные наушники могут точнее воспроизводить аудио сигнал. Но, и это критический момент, электрическое демпфирование эффективно лишь тогда, когда выходной импеданс усилителя намного меньше импеданса наушников . Если вы включите 16-омные наушники в усилитель с выходным импедансом 50 Ом, электрическое демпфирование сойдет на нет. Это значит, что динамик не остановится в тот момент, когда он должен остановиться. Это похоже на автомобиль с изношенными амортизаторами. Конечно же, если правило 1/8 соблюдено, электрическое демпфирование будет достаточным.

АКУСТИЧЕСКАЯ ПОДВЕСКА: В 70-х ситуация изменилась, так как популярными стали транзисторные усилители. Практически во всех транзисторных усилителях соблюдается правило 1/8. Фактически большинство соответствует правилу 1/50 - их выходной импеданс меньше 0.16 Ом, что даёт коэффициент демпфирования 50. Таким образом производители динамиков получили возможность разрабатывать более качественные динамики, использующие преимущества низкого выходного импеданса. Прежде всего были разработаны первые закрытые динамики с акустической подвеской от Acoustic Research, Large Advents, и др. Они обладали более глубоким и точным басом, чем у аналогичных по размеру предшественников, рассчитанных на ламповые усилители. Это было большим прорывом в области hi-fi - благодаря новым усилителям теперь можно было в значительной мере полагаться на электрическое демпфирование. И очень жаль, что столь многие источники сегодня отстают от жизни на 40 и более лет.

КАКОЙ ВЫХОДНОЙ ИМПЕДАНС У МОЕГО УСТРОЙСТВА? Некоторые разработчики дают понять, что они стремятся максимально снизить выходной импеданс (как, например, Benchmark), в то время как другие указывают для своих продуктов его фактическое значение (например, 50 Ом для Behringer UCA202). Большинство же, к сожалению, оставляют это значение загадкой. Некоторые обзоры оборудования (например, в этом блоге) включают измерение выходного импеданса, так как от него в значительной мере зависит, как будет звучать устройство с теми или иными наушниками.

ПОЧЕМУ ТАКОЕ БОЛЬШОЕ КОЛИЧЕСТВО ИСТОЧНИКОВ ИМЕЕТ ВЫСОКИЙ ВЫХОДНОЙ ИМПЕДАНС? Наиболее распространенные причины следующие:

  • Защита наушников - Более мощные источники с низким выходным импедансом зачастую способны подать слишком большую мощность на низкоомные наушники. Дабы защитить такие наушники от повреждения, некоторые разработчики увеличивают выходной импеданс. Таким образом это компромисс, адаптирующий усилитель к нагрузке, но ценой ухудшения параметров для большинства наушников . Лучшее решение - возможность выбора двух уровней усиления. Низкий уровень позволяет установить меньше выходное напряжение для наушников с низким импедансом. Также в добавок может использоваться ограничение по току, таким образом источник будет автоматически ограничивать ток для низкоомных наушников, даже если установлен слишком большой уровень усиления.
  • Чтобы отличаться - Некоторые разработчики специально завышают выходной импеданс, утверждая, что это улучшает звучание их устройства. Иногда это используется как способ сделать звучание продукта отличным от звучания конкурирующих продуктов. Но в таком случае каждое «отдельное звучание», которое вы получаете, полностью зависит от используемых наушников. Для некоторых наушников это воспринимается как улучшение, с другими же скорей как значительное ухудшение. Наиболее вероятно, что звучание в значительной мере исказится.
  • Это дешево - Более высокий выходной импеданс является наиболее простым решением для дешевых источников. Это дешевый способ достижения стабильности, простейшая защита от короткого замыкания; также это позволяет использовать менее качественные операционные усилители, которые в противном случае напрямую не смогли бы раскачать даже 16 или 32-омные наушники. Путем последовательного подключения к выходу некоторого сопротивления, все эти проблемы решаются ценой в какой-то цент. Но за это дешевое решение приходится платить значительным ухудшением качества звучания на многих моделях наушников.

ИСКЛЮЧЕНИЯ ИЗ ПРАВИЛ: Существует несколько наушников, якобы предназначенных для использования с высоким выходным импедансом. Лично мне интересно, миф это или реальность, так как я не знаю ни одного конкретного примера. Впрочем, это возможно. В таком случае использование этих наушников с низкоомным источником может привести к передемпфированной динамике басов и, как следствие, к отличной от планируемой разработчиком АЧХ. Этим могут объясняться отдельные случаи «синергии», когда определенные наушники сочетаются с определенным источником. Но этот эффект воспринимается сугубо субъективно - для кого-то как выразительность и детальность звучания, для кого-то - как излишняя жесткость. Единственный способ добиться адекватной работы - использовать низкоомный источник и соблюдать правило 1/8.

КАК НЕДОРОГО ПРОВЕРИТЬ: Если вас интересует, не страдает ли качество звучания из-за выходного импеданса источника, могу предложить приобрести за 19$ усилитель FiiO E5 . Он оснащен выходом с практически нулевым импедансом и его будет достаточно для большей части наушников с импедансом

ИТОГО: Если только вы не абсолютно уверены, что ваши наушники звучат лучше с каким-то определенным более высоким выходным импедансом, лучше всегда использовать источники с импедансом не более 1/8 от импеданса ваших наушников. Или еще проще: с импедансом не более 2 Ом.

ТЕХНИЧЕСКАЯ ЧАСТЬ

ИМПЕДАНС И СОПРОТИВЛЕНИЕ: Эти два термина в некоторых случаях взаимозаменяемы, но технически они имеют значительные отличия. Электрическое сопротивление обозначается буквой R и имеет одинаковое значение для всех частот. Электрический импеданс - величина более сложная, и его значение обычно меняется с частотой. Он обозначается буковой Z . В рамках данной статьи единицы измерения обоих величин - Омы .

НАПРЯЖЕНИЕ И ТОК: Чтобы понять, что такое импеданс, и о чем вообще идет речь в этой статье, важно иметь хотя бы общее представление о напряжении и токе. Напряжение подобно давлению воды, в то время как ток является аналогом потока воды (например, литров в минуту). Если вы пустите воду из своего садового шланга, не прикрепив ничего к его концу, вы получите большой поток воды (ток) и сможете быстро наполнить ведро, но давление вблизи конца шланга будет практически равняться нулю. Если вы воспользуетесь небольшой насадкой на шланг, давление (напряжение) будет значительно большим, а поток воды при этом уменьшится (понадобится больше времени, чтобы наполнить то же самое ведро). Эти два значения связаны обратной зависимостью. Взаимосвязь между напряжением, током и сопротивлением (а также импедансом, в рамках данной статьи) определяется Законом Ома. R можно заменить на Z.

ОТКУДА ВЗЯЛОСЬ ПРАВИЛО 1/8?: Минимальные слышимые отличия громкости, которые воспринимаются человеком - около 1 дБ. Падение в -1 дБ на выходном импедансе соответствует коэффициенту, 10^(-1/20) = 0.89 . Используя формулу делителя напряжения, мы получим, что когда выходной импеданс равен 1/8 импеданса нагрузки, коэффициент как раз равен 0.89, т. е. падение напряжения составляет -1 дБ. Импеданс наушников может меняться в пределах полосы звуковых частот в 10 или более раз. Для SuperFi 5 указан импеданс 21 Ом, но фактически он изменяется от 10 до 90 Ом. Таким образом правило 1/8 даёт нам значение максимального выходного импеданса 2.6 Ом. Если принять напряжение источника равным 1 В:

  • Напряжение на наушниках при импедансе 21 Ом (номинальный) = 21 / (21+2.6) = 0.89 В
  • Напряжение на наушниках при импедансе 10 Ом (минимальный) = 10 / (10+2.6) = 0.79 В
  • Напряжение на наушниках при импедансе 90 Ом (максимальный) = 90 / (90+2.6) = 0.97 В
  • Неравномерность АЧХ = 20*log(0.97/0.89) = 0.75 дБ (менее 1 дБ)

ИЗМЕРЕНИЕ ВЫХОДНОГО ИМПЕДАНСА: Как видно из принципиальной схемы выше, выходное сопротивление формирует делитель напряжения. Измерив выходное напряжение без подключения нагрузки и с известной нагрузкой, вы сможете рассчитать выходной импеданс. Это можно легко сделать с помощью онлайн калькулятора . Напряжение без нагрузки - это «Input Voltage», R2 - это известное сопротивление нагрузки (не используйте в данном случае наушники), «Output Voltage» - напряжение при подключении нагрузки. Нажмите Compute, и получите искомый выходной импеданс R1. Также это можно сделать с помощью 60-герцовой синусоиды (её можно сгенерировать, например, в Audacity), цифрового мультиметра и 15 - 33-омного резистора. Большинство цифровых мультиметров имеют хорошую точность лишь вблизи частоты 60 Гц. Воспроизведите 60 Гц синусоиду и отрегулируете громкость таким образом, чтобы выходное напряжение было равно примерно 0.5 В. Затем подключите резистор и зафиксируйте новое значение напряжения. Например, если вы получили 0.5 В без нагрузки и 0.38 В с нагрузкой 33 Ом, выходной импеданс равен примерно 10 Ом. Формула здесь следующая: Zист = (Rн * (Vхх - Vн)) / Vн. Vхх - напряжение без нагрузки (холостой ход).

Ни одни наушники не обладают полностью резистивным сопротивлением, не изменяющимся в пределах диапазона звуковых частот. Абсолютное большинство наушников представляют собой реактивное сопротивление и обладают комплексным импедансом . Из-за емкостных и индуктивных составляющих импеданса наушников его значение меняется с частотой. Например, вот зависимость импеданса (желтым) и фазы (белым) от частоты для Super Fi 5. Ниже ~200 Гц импеданс равен всего 21 Ом. Выше 200 Гц он возрастает до ~90 Ом к 1200 Гц, а затем спадает до 10 Ом к 10 кГц:

ПОЛНОРАЗМЕРНЫЕ НАУШНИКИ: Возможно, кого-то не интересуют внутриканальные наушники вроде Super Fi 5, так что вот импеданс и фаза для популярной модели Sennheiser HD590. Импеданс всё так же варьируется: от 95 до 200 Ом - практически в два раза:

МАТЧАСТЬ: Один из графиков в начале статьи демонстрировал неравномерность АЧХ около 12 дБ для SuperFi 5, подключенных к источнику с импедансом 43 Ом. Если мы примем номинальное значение 21 Ом за опорное, а выходное напряжение источника примем равным 1 В, уровень напряжения на наушниках будет следующим:

  • Опорный уровень: 21 / (43 + 21) = 0.33 В - что соответствует 0 дБ
  • При минимальном импедансе 9 Ом: 9 / (9 + 43) = 0.17 В = -5.6 дБ
  • При максимальном импедансе 90 Ом: 90 / (90 + 43) = 0.68 В = +6.2 дБ
  • Диапазон изменения = 6.2 + 5.6 = 11.8 дБ

УРОВНИ ДЕМПФИРОВАНИЯ: Демпфирование динамиков, как пояснялось ранее, может быть либо чисто механическим (Qms), либо складываться из электрического (Qes) и механического демпфирования. Суммарное демпфирование обозначается Qts. Как эти параметры взаимодействуют на низких частотах - объясняется моделированием Тиля - Смолла . Уровни демпфирования можно подразделить на три категории:

  • Критическое демпфирование (Qts = 0.7) - Многие считают его идеальным случаем, так как оно обеспечивает наиболее глубокие НЧ, без каких-либо отклонений АЧХ или чрезмерного звона (неконтролируемых перемещений диффузора). Бас такого динамика обычно воспринимается как «упругий»,«четкий» и «прозрачный». Большинство считает, что Qts 0.7 обеспечивает идеальную переходную характеристику.
  • Избыточное демпфирование (Qts
  • Слабое демпфирование (Qts > 0.7) - Позволяет получить некоторое усиление НЧ с пиком в верхней части НЧ диапазона. Динамик контролируется не полностью, что приводит к чрезмерному «звону» (т.е. диффузор недостаточно быстро прекращает своё движение после затухания электрического сигнала). Слабое демпфирование приводит к отклонениям АЧХ, менее глубоким басам , плохой переходной характеристике и подъему АЧХ в области верхней границы НЧ. Слабое демпфирование - это дешевый способ поднять уровень басов ценой их качества. Этот прием активно используется в дешевых наушниках, дабы создать «поддельные басы». Звучание недодемпфироанных динамиков часто характеризуется как «гулкий» или «небрежный» бас. Если ваши наушники рассчитаны на электрическое демпфирование, и вы будете использовать их с источником, имеющим импеданс более 1/8 импеданса наушников, вы получите именно такие, недодемпфированные НЧ .

ТИПЫ ДЕМПФИРОВАНИЯ: Есть три способа демпфирования динамиков / контроля резонанса:

  • Электрическое демпфирование - Уже известное нам Qes, оно подобно рекуперативному торможению в гибридных электромобилях. Когда вы жмете на тормоза, электромотор замедляет движение машины, превращаясь в генератор и передавая энергию обратно батареям. Динамик способен выполнять то же самое. Но если выходной импеданс усилителя увеличивается, эффект торможения значительно снижается - отсюда и правило 1/8.
  • Механическое демпфирование - Известное как Qms, оно скорей подобно автомобильным амортизаторам. По мере того, как вы увеличиваете механическое демпфирование динамика, оно ограничивает управлющий им музыкальный сигнал, что приводит к большей нелинейности. Это увеличивает искажения и снижает качество звучания.
  • Демпфирование за счет корпуса - Корпус может обеспечить демпфирование, но при этом требуется, чтоб он был закрытым - либо с правильно настроенным фазоинвертором, либо с контролируемым ограничением. Множество топовых наушников конечно же являются открытыми, что исключает возможность использования демпфирования за счет корпуса, как в акустических колонках.

УРОВЕНЬ ПРИЖИМА: Для наушников, которые имеют достаточно плотную посадку, вроде полноразмерных охватывающих с плотно прилегающими амбушюрами, разработчик могут учитывать возможность некоторого дополнительного демпфирования за счет ушной раковины. Но форма головы, ушей, прическа, посадка наушников, наличие очков и другие факторы делают этот эффект практически непредсказуемым. Для накладных наушников эта возможность отсутствует вообще. Ниже вы видите два графика, изображающих импеданс Sennheiser HD650. Обратите внимание: резонансный пик на НЧ в открытом виде имеет уровень 530 Ом, но при использовании искусственной головы значение снижается до 500 Ом. Причиной этого является демпфирование за счет закрытого пространства, образованного ушной раковиной и амбушюрами.

ЗАКЛЮЧЕНИЕ: Надеюсь, теперь понятно, что единственным путем достижения эффективной работы связки наушники-усилитель является соблюдение правила 1/8. Хоть кое-кто и предпочитает звучание при более высоком выходном импедансе, оно в крайней степени зависит от используемой модели наушников, значения выходного импеданса и личных предпочтений. В идеале - следовало бы создать новый стандарт, в соответствии с которым разработчики должны были бы выпускать источники с выходным импедансом менее 2 Ом.

Информация от спонсора

KUPI.TUT.BY: удобный каталог ноутбуков, ноутбуки цены . Здесь Вы можете подобрать и купить ноутбук по низкой цене. Удобство оплаты, доставка, гарантия качества.

Оригинал статьи на английском: Headphone & Amp Impedance

Почему так важно значение выходного импеданса источника (усилителя), как он взаимодействует с наушниками и на что влияет.

Copyright Taras Kovrijenko 2009–2019