Транскрипт

1 1 СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ Signals and linear systems. Correlation of signals Тема 6. КОРРЕЛЯЦИЯ СИГНАЛОВ Предельный страх и предельный пыл храбрости одинаково расстраивают желудок и вызывают понос. Мишель Монтень. Французский юрист-мыслитель, XVI в. Вот это номер! Две функции имеют стопроцентную корреляцию с третьей и ортогональны друг другу. Ну и шуточки были у Всевышнего при сотворении Мира. Анатолий Пышминцев. Новосибирский геофизик Уральской школы, ХХ в. Содержание 1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов. 2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов. Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов. 3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ. ВВЕДЕНИЕ Корреляция (correlation), и ее частный случай для центрированных сигналов ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения. Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция). В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т.е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений. В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов. Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов. Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" к произвольным. В технической литературе, и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов АВТОКОРРЕЛЯЦИОННЫЕ ФУНКЦИИ СИГНАЛОВ . Понятие автокорреляционных функций сигналов. Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной интегральной характеристикой формы сигнала, выявления в сигнале характера и параметров взаимной временной связи отсчетов, что всегда имеет место для периодических сигналов, а также интервала и сте-

2 2 пени зависимости значений отсчетов в текущие моменты времени от предыстории текущего момента. АКФ определяется интегралом от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время: B s () = s(t) s(t+) dt = s(t), s(t+) = s(t) s(t+) cos (). (6.1.1) Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига. Соответственно, АКФ имеет физическую размерность энергии, а при = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1): B s (0) = s(t) 2 dt = E s. АКФ относится к четным функциям, в чем нетрудно убедиться заменой переменной t = t- в выражении (6.1.1): B s () = s(t-) s(t) dt = B s (-). Максимум АКФ, равный энергии сигнала при =0, всегда положителен, а модуль АКФ при любом значении временного сдвига не превосходит энергии сигнала. Последнее прямо вытекает из свойств скалярного произведения (как и неравенство Коши-Буняковского): s(t), s(t+) = s(t) s(t+ cos (), cos () = 1 при = 0, s(t), s(t+) = s(t) s(t) = E s, cos () < 1 при 0, s(t), s(t+) = s(t) s(t+) cos () < E s. Рис В качестве примера на рис приведены два сигнала прямоугольный импульс и радиоимпульс одинаковой длительности Т, и соответствующие данным сигналам формы их АКФ. Амплитуда колебаний радиоимпульса установлена равной T амплитуды прямоугольного импульса, при этом энергии сигналов также будут одинаковыми, что подтверждается равными значениями центральных максимумов АКФ. При конечной длительности импульсов длительности АКФ также конечны, и равны удвоенным значениям длительности импульсов (при сдвиге копии конечного импульса на интервал его длительности как влево, так и вправо, произведение импульса со своей копией становится равным нулю). Частота колебаний АКФ радиоимпульса равна частоте колебаний заполнения радиоимпульса (боковые минимумы и максимумы АКФ возникают каждый раз при последовательных сдвигах копии радиоимпульса на половину периода колебаний его заполнения). С учетом четности, графическое представление АКФ обычно производится только для положительных значений. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак + в выражении (6.1.1) означает, что при увеличении значений копия сигнала s(t+) сдвигается влево по оси t и уходит за 0. Для цифровых сигналов это требует соответствующего продления данных в область отрицательных значений аргумента. А так как при вычислениях интервал задания обычно много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (6.1.1) функции s(t-) вместо s(t+).

3 3 B s () = s(t) s(t-) dt. (6.1.1") Для финитных сигналов по мере увеличения значения величины сдвига временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю: lim Bs(τ) = 0. τ АКФ, вычисленная по центрированному значению сигнала s(t), представляет собой автоковариационную функцию сигнала: C s () = dt, (6.1.2) где s среднее значение сигнала. Ковариационные функции связаны с корреляционным функциями достаточно простым соотношением: C s () = B s () - 2 s. АКФ сигналов, ограниченных во времени. На практике обычно исследуются и анализируются сигналы, заданные на определенном интервале. Для сравнения АКФ сигналов, заданных на различных временных интервалах, практическое применение находит модификация АКФ с нормировкой на длину интервала. Так, например, при задании сигнала на интервале : B s () = b 1 s(t) s(t+) dt. (6.1.3) a a АКФ может быть вычислена и для слабозатухающих сигналов с бесконечной энергией, как среднее значение скалярного произведения сигнала и его копии при устремлении интервала задания сигнала к бесконечности: b T B s () lim s(t) s(t τ) dt T T 1 0. (6.1.4) АКФ по данным выражениям имеет физическую размерность мощности, и равна средней взаимной мощности сигнала и его копии в функциональной зависимости от сдвига копии. АКФ периодических сигналов. Энергия периодических сигналов бесконечна, поэтому АКФ периодических сигналов вычисляется по одному периоду Т, с усреднением скалярного произведения сигнала и его сдвинутой копии в пределах периода: Математически более строгое выражение: B s () lim T s(t) s(t - τ) dt T T 1 0 B s () = (1/Т) T s(t) s(t-) dt. (6.1.5) 0 При =0 значение нормированной на период АКФ равно средней мощности сигналов в пределах периода. При этом АКФ периодических сигналов является периодической функцией с тем же периодом Т. Так, для сигнала s(t) = A cos(0 t+ 0) при T=2/ 0 имеем: ω π/ω0 0 B s () = A cos(0 t+ 0) A cos(0 (t-)+ 0) = (A 2 /2) cos(0). (6.1.6) 2π π/ω 0 Полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ. С помощью функций автокорреляции можно проверять наличие периодических свойств в любых произвольных сигналах. Пример автокорреляционной функции периодического Рис сигнала приведен на рис Функции автоковариации (ФАК) вычисляются аналогично, по центрированным значениям сигнала. Замечательной особенностью этих функций являются их простые соотношения с дисперсией 2 s сигналов (квадратом стандарта - среднего квадратического отклонения значений сигнала от среднего значения). Как известно, зна-.

4 4 чение дисперсии равно средней мощности сигналов, откуда следует: C s () s 2, C s (0) = s 2 s(t) 2. (6.1.7) Значения ФАК, нормированные на значение дисперсии, представляют собой функцию автокорреляционных коэффициентов: s () = C s ()/C s (0) = C s ()/ s 2 cos). (6.1.8) Иногда эту функцию называют "истинной" автокорреляционной функцией. В силу нормировки ее значения не зависят от единиц (масштаба) представления значений сигнала s(t) и характеризуют степень линейной связи между значениями сигнала в зависимости от величины сдвига между отсчетами сигнала. Значения s () cos () могут изменяться от 1 (полная прямая корреляция отсчетов) до -1 (обратная корреляция). Рис На рис приведен пример сигналов s() и s1() = s()+шум с соответствующими этим сигналам коэффициентами ФАК - s и s1. Как видно на графиках, ФАК уверенно выявила наличие периодических колебаний в сигналах. Шум в сигнале s1() понизил амплитуду периодических колебаний без изменения периода. Это подтверждает график кривой C s / s1, т.е. ФАК сигнала s() с нормировкой (для сопоставления) на значение дисперсии сигнала s1(), где наглядно можно видеть, что шумовые импульсы при полной статистической независимости своих отсчетов вызвали увеличение значения С s1 (0) по отношению к значению C s (0) и несколько "размыли" функцию коэффициентов автоковариации. Это вызвано тем, что значение s () шумовых сигналов стремится к 1 при 0 и флюктуирует относительно нуля при 0, при этом амплитуды флюктуаций статистически независимы и зависят от количества выборок сигнала (стремятся к нулю при увеличении количества отсчетов). АКФ дискретных сигналов. При интервале дискретизации данных t = const вычисление АКФ выполняется по интервалам = t и обычно записывается, как дискретная функция номеров n сдвига отсчетов n: B s (nt) = t s s -n. (6.1.9) Дискретные сигналы обычно задаются в виде числовых массивов определенной длины с нумерацией отсчетов к = 0,1, К при t=1, а вычисление дискретной АКФ в единицах энергии выполняется в одностороннем варианте с учетом длины массивов. Если используется весь массив сигнала и число отсчетов АКФ равно числу отсчетов массива, то вычисление выполняется по формуле: B s (n) = K-n K K n s s -n. (6.1.10) Множитель K/(K-n) в данной функции является поправочным коэффициентом на постепенное уменьшение числа перемножаемых и суммируемых значений по мере увеличения сдвига n. Без этой поправки для нецентрированных сигналов в значениях АКФ появляется тренд суммирования средних значений. При измерениях в единицах мощности сигнала множитель К/(K-n) заменяется на множитель 1/(K-n). Формула (6.1.10) применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле: 0

5 K 5 B s (n) = K 1 s s -n, s -n = 0 при -n < 0, (6.1.11) 0 т.е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах -n или в правую сторону при использовании сдвигов +n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (6.1.10). Разницу между нормировками по формулам (6.1.10) и (6.1.11) можно наглядно видеть на рис Рис Формулу (6.1.11) можно рассматривать, как усреднение суммы произведений, т.е. как оценку математического ожидания: B s (n) = M{s s -n } s s. (6.1.12) n Практически, дискретная АКФ имеет такие же свойства, как и непрерывная АКФ. Она также является четной, а ее значение при n = 0 равно энергии или мощности дискретного сигнала в зависимости от нормировки. АКФ зашумленных сигналов. Зашумленный сигнал записывается в виде суммы v() = s()+q(). В общем случае, шум не обязательно должен иметь нулевое среднее значение, и нормированная по мощности автокорреляционная функция цифрового сигнала, содержащая N отсчетов, записывается в следующем виде: B v (n) = (1/N) s()+q(), s(-n)+q(-n) = = (1/N) = = B s (n) + M{s q -n } + M{q s -n } + M{q q -n }. B v (n) = B s (n) + s q n + q s n + q q n. (6.1.13) При статистической независимости полезного сигнала s() и шума q() с учетом разложения математического ожидания M{s q -n } = M{s } M{q -n } = s q может использоваться следующая формула: Рис B v (n) = B s (n) + 2 s q + q. (6.1.13") Пример зашумленного сигнала и его АКФ в сопоставлении с незашумленным сигналом приведен на рис Из формул (6.1.13) следует, что АКФ зашумленного сигнала состоит из АКФ сигнальной компоненты полезного сигнала с наложенной затухающей до значения 2s q + q 2 шумовой функцией. При больших значениях K, когда q 0, имеет место B v (n) B s (n). Это дает возможность не только выделять по АКФ периодические сигналы, практически полностью скрытые в шуме (мощность шумов много больше мощности сигнала), но и с высокой точностью определять их период и форму в пределах периода, а для одночастотных гармонических сигналов и их амплитуду с использованием выражения (6.1.6).

6 Таблица 6.1. M Сигнал Баркера АКФ сигнала 2 1, -1 2, 1, -1 3, 0, 1, 1, -1 4, 1, 0, -1 1, 1, -1, 1 4, -1, 0, 1 5 1, 1, 1, -1, 1 5, 0, 1, 0, 1 7 1, 1, 1, -1, -1, 1, -1 7, 0, -1, 0, -1, 0,1,1,-1,-1,-1,1,-1,-1,1,-1 11,0,-1,0,-1,0,-1,0,-1,0,1,1,1,1,-1,-1,1,1-1,1,-1,1 13,0,1,0,1,0,1,0,1,0,1,0,1 6 Кодовые сигналы являются разновидностью дискретных сигналов. На определенном интервале кодового слова Мt они могут иметь только два амплитудных значения: 0 и 1 или 1 и 1. При выделении кодов на существенном уровне шумов форма АКФ кодового слова имеет особое значение. С этой позиции наилучшими считаются такие коды, значения боковых лепестков АКФ которых минимальны по всей длине интервала кодового слова при максимальном значении центрального пика. К числу таких кодов относится код Баркера, приведенный в таблице 6.1. Как видно из таблицы, амплитуда центрального пика кода численно равна значению М, при этом амплитуда боковых осцилляций при n 0 не превышает ВЗАИМНЫЕ КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ СИГНАЛОВ . Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов: B su () = s(t) u(t+) dt. (6.2.1) Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой устойчивости данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом: B su () s(t) u(t), что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам. При замене переменной t = t- в формуле (6.2.1), получаем: B su () = s(t-) u(t) dt = u(t) s(t-) dt = B us (-). Рис Сигналы и ВКФ. Отсюда следует, что для ВКФ не выполняется условие четности, B su () B su (-), и значения ВКФ не обязаны иметь максимум при = 0. Это можно наглядно видеть на рис, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+)). При =0 сигналы ортогональны и значение B 12 ()=0. Максимум В 12 () будет наблюдаться при сдвиге сигнала s2(t) влево на значение =1, при котором происходит полное совмещение сигналов s1(t) и s2(t+). Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1") наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т.е. B su () = B us (-

7 7 На рис приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2. Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при =0, что Рис Взаимноковариационные функции сигналов. и фиксируется функцией B su. Вместе с тем функция B su резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака при увеличения значения от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига функция B sv на рис Если поменять местами выражения функций в (6.2.1), то новая функция B vs будет зеркально повернутой относительно =0 функцией B sv. С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний: B su () = s(t) u(t+) dt. B us () = u(t) s(t+) dt. (6.2.1") Взаимная корреляция зашумленных сигналов. Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде: B uv () = B s1s2 () + B s1q2 () + B q1s2 () + B q1q2 (). (6.2.2) Последние три члена в правой части (6.2.2) затухают до нуля при увеличении. При больших интервалах задания сигналов выражение может быть записано в следующей форме: B uv () = B s1s2 () + s1() q2() + q1() s2() + q1() q2(). (6.2.3) При нулевых средних значениях шумов и статистической независимости от сигналов имеет место: B uv () B s1s2 (). ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы). В частности, при t = const =1 для сигналов x() и y() с числом отсчетов К: B xy (n) = При нормировании в единицах мощности: K K n K K-n 0 x y -n. (6.2.4) B xy (n) = K 1 x y -n x y n. (6.2.5) 0 Оценка периодических сигналов в шуме. Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения. Для сигнала u()=s()+q() при статистической независимости шума и q 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p() при q2()=0 принимает вид: B up () = B sp () + B qp () = B sp () + q p. А поскольку q 0 при увеличении N, то B up () B sp (). Очевидно, что функция B up () будет иметь максимум, когда p() = s(). Меняя форму шаблона p() и добиваясь максимизации функции B up (), можно получить оценку s() в виде оптимальной формы p(). Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэф-

8 8 фициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t): su () = C su ()/ s v. (6.2.6) Интервал изменения значений корреляционных коэффициентов при сдвигах может изменяться от 1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах, на которых наблюдаются нулевые значения su (), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины. При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений su (n) > 1. Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем СПЕКТРАЛЬНЫЕ ПЛОТНОСТИ КОРРЕЛЯЦИОННЫХ ФУНКЦИЙ . Спектральная плотность АКФ может быть определена из следующих простых соображений. В соответствии с выражением (6.1.1) АКФ представляет собой функцию скалярного произведения сигнала и его копии, сдвинутой на интервал при - < < : B s () = s(t), s(t-). Скалярное произведение может быть определено через спектральные плотности сигнала и его копии, произведение которых представляет собой спектральную плотность взаимной мощности: s(t), s(t-) = (1/2) S() S *() d Смещение сигнала по оси абсцисс на интервал отображается в спектральном представлении умножением спектра сигнала на exp(-j), а для сопряженного спектра на множитель exp(j): S *() = S*() exp(j). С учетом этого получаем: s ()= (1/2) S() S*() exp(j) d = (1/2) S() 2 exp(j) d (6.3.1) Но последнее выражение представляет собой обратное преобразование Фурье энергетического спектра сигнала (спектральной плотности энергии). Следовательно, энергетический спектр сигнала и его автокорреляционная функция связаны преобразованием Фурье: B s () S() 2 = W s (). (6.3.2) Таким образом, спектральная плотность АКФ есть не что иное, как спектральная плотность мощности сигнала, которая, в свою очередь, может определяться прямым преобразованием Фурье через АКФ: S() 2 = B s () exp(-j) d. (6.3.3) Последние выражение накладывает определенные ограничения на форму АКФ и методику их ограничения по длительности. Энергетический спектр сигналов всегда положителен, мощность сигналов не может быть отрицательной. Следовательно, АКФ не может иметь формы прямоугольного импульса, т.к. преобразование Фурье прямоугольного импульса знакопеременный интегральный синус. На АКФ не должно быть и разрывов Рис Спектр несуществующей АКФ первого рода (скачков), т.к. с учетом четности АКФ любой симметричный скачек по координате по-

9 9 рождает разделение АКФ на сумму определенной непрерывной функции и прямоугольного импульса длительностью 2с соответствующим появлением отрицательных значений в энергетическом спектре. Пример последнего приведен на рис (графики функций приведены, как принято для четных функций, только своей правой частью). АКФ достаточно протяженных сигналов обычно ограничиваются по размерам (исследуются ограниченные интервалы корреляции данных от Т/2 до Т/2). Однако усечение АКФ, это умножение АКФ на прямоугольный селектирующий импульс длительностью Т, что в частотной области отображается сверткой фактического спектра мощности со знакопеременной функцией интегрального синуса sinc(t/2). С одной стороны, это вызывает определенное сглаживание спектра мощности, что зачастую бывает полезным, например, при исследовании сигналов на значительном уровне шумов. Но, с другой стороны, может происходить и существенное занижение величины энергетических пиков, если в сигнале имеются какие-либо гармонические составляющие, а также появление отрицательных значений мощности на краевых частях пиков и скачков. Пример проявления данных факторов приведен на рис Рис Вычисление энергетического спектра сигнала по АКФ разной длины. Как известно, спектры мощности сигналов не имеют фазовой характеристики и по ним невозможно восстановление сигналов. Следовательно, АКФ сигналов, как временное представление спектров мощности, также не имеет информации о фазовых характеристиках сигналов и восстановление сигналов по АКФ невозможно. Сигналы одной формы, сдвинутые во времени, имеют одинаковые АКФ. Больше того, сигналы разной формы могут иметь сходные АКФ, если имеют близкие спектры мощности. Перепишем уравнение (6.3.1) в следующей форме s(t) s(t-) dt = (1/2) S() S*() exp(j) d, и подставим в это выражение значение =0. Полученное равенство хорошо известно и называется равенством Парсеваля s 2 (t) dt = (1/2) S() 2 d. Оно позволяет вычислять энергию сигнала, как по временной, так и по частотной области описания сигналов. Интервал корреляции сигнала является числовым параметром оценки ширины АКФ и степени значимой корреляции значений сигнала по аргументу. Если допустить, что сигнал s(t) имеет примерно равномерный энергетический спектр со значением W 0 и с верхней граничной частотой до в (форма центрированного прямоугольного импульса, как, например, сигнал 1 на рис с f в =50 Гц в одностороннем представлении), то АКФ сигнала определится выражением: Рис ω B s () = (W o /) в 0 cos() d = (Wo в /) sin(в)/(в). Интервалом корреляции сигнала к считается величина ширины центрального пика АКФ от

10 10 максимума до первого пересечения нулевой линии. В данном случае для прямоугольного спектра с верхней граничной частотой в первое пересечение нуля соответствует sinc(в) = 0 при в =, откуда: к = / в =1/2f в. (6.3.4) Интервал корреляции тем меньше, чем выше верхняя граничная частота спектра сигнала. Для сигналов с плавным срезом по верхней граничной частоте роль параметра в играет средняя ширина спектра (сигнал 2 на рис). Спектральная плотность мощности статистических шумов при единичном измерении представляет собой случайную функцию W q () со средним значением W q () q 2, где q 2 дисперсия шумов. В пределе, при равномерном спектральном распределении шумов от 0 до, АКФ шумов стремится к значению B q () q 2 при 0, B q () 0 при 0, т.е. статистические шумы не коррелированны (к 0). Практические вычисления АКФ финитных сигналов обычно ограничиваются интервалом сдвигов = {0, (3-5) }, в котором, как правило, сосредоточена основная информация по автокорреляции сигналов. Спектральная плотность ВКФ может быть получена на основании тех же соображений, что и для АФК, или непосредственно из формулы (6.3.1) заменой спектральной плотности сигнала S() на спектральную плотность второго сигнала U(): su ()= (1/2) S*() U() exp(j) d (6.3.5) Или, при смене порядка сигналов: us ()= (1/2) U*() S() exp(j) d (6.3.5") Произведение S*()U() представляет собой взаимный энергетический спектр W su () сигналов s(t) и u(t). Соответственно, U*()S() = W us (). Следовательно, как и АКФ, взаимнокорреляционная функция и спектральная плотность взаимной мощности сигналов связаны между собой преобразованиями Фурье: B su () W su () W* us (). (6.3.6) B us () W us () W* su (). (6.3.6") В общем случае, за исключением спектров четных функций, из условия несоблюдения четности для функций ВКФ следует, что взаимные энергетические спектры являются комплексными функциями: U() = A u () + j B u (), V() = A v () + j B v (). W uv = A u A v +B u B v +j(b u A v - A u B v) = Re W uv (w) + j Im W uv (), и содержат определенную фазовую характеристику гармонических составляющих ВКФ, которой и формируется сдвиг максимума ВКФ. На рис можно наглядно видеть особенности формирования ВКФ на примере двух одинаковых по форме сигналов, сдвинутых относительно друг друга. Рис Формирование ВКФ. Форма сигналов и их взаимное расположение приведены на виде А. Модуль и аргумент спектра сигнала s(t) приведены на виде В. Модуль спектра u(t) тождественен модулю S(). На этом же виде приведен модуль спектра взаимной мощности сигналов S()U*(). Как известно, при перемножении комплексных спектров модули спектров перемножаются, а фазовые углы складываются, при этом для сопряженного спектра U*() фазовый угол меняет знак. Если первым в форму-

11 11 ле вычисления ВКФ (6.2.1) стоит сигнал s(t), а сигнал u(t-) на оси ординат стоить впереди s(t), то фазовые углы S() по мере увеличения частоты нарастают в сторону отрицательных значений углов (без учета периодического сброса значений на 2), а фазовые углы U*() по абсолютным значениям меньше фазовых углов s(t) и нарастают (за счет сопряжения) в сторону положительных значений. Результатом умножения спектров (как это видно на рис, вид С) является вычитание из фазовых углов S() значений углов U*(), при этом фазовые углы спектра S()U*() остаются в области отрицательных значений, что обеспечивает сдвиг всей функции ВКФ (и ее пиковых значений) вправо от нуля по оси на определенную величину (для одинаковых сигналов на величину разности между сигналами по оси ординат). При смещении начального положения сигнала u(t) в сторону сигнала s(t) фазовые углы S()U*() уменьшаются, в пределе до нулевых значений при полном совмещении сигналов, при этом функция B su (t) смещается к нулевым значениям, в пределе до обращения в АКФ (для одинаковых сигналах s(t) и u(t)). Как известно для детерминированных сигналов, если спектры двух сигналов не перекрываются и, соответственно, взаимная энергия сигналов равна нулю, такие сигналы ортогональны друг другу. Связь энергетических спектров и корреляционных функций сигналов показывает еще одну сторону взаимодействия сигналов. Если спектры сигналов не перекрываются и их взаимный энергетический спектр равен нулю на всех частотах, то при любых временных сдвигах друг относительно друга их ВКФ также равна нулю. А это означает, что такие сигналы являются некоррелированными. Это действительно как для детерминированных, так и для случайных сигналов и процессов. Вычисление корреляционных функций при помощи БПФ является, особенно для длинных числовых рядов, в десятки и сотни раз более быстрым методом, чем последовательными сдвигами во временной области при больших интервалах корреляции. Суть метода вытекает из формул (6.3.2) для АКФ и (6.3.6) для ВКФ. Учитывая, что АКФ можно рассматривать как частный случай ВКФ при одном и том же сигнале, процесс вычисления рассмотрим на примере ВКФ для сигналов x() и y() с числом отсчетов К. Он включает: 1. Вычисление БПФ спектров сигналов x() X() и y() Y(). При разном количестве отсчетов более короткий ряд дополняется нулями до размера большего ряда. 2. Вычисление спектров плотности мощности W xy () = X*() Y(). 3. Обратное БПФ W xy () B xy (). Отметим некоторые особенности метода. При обратном БПФ, как известно, вычисляется циклическая свертка функций x() 3 y(). Если число отсчетов функций равно К, число комплексных отсчетов спектров функций также равно К, равно как и число отсчетов их произведения W xy (). Соответственно, число отсчетов B xy () при обратном БПФ также равно К и циклически повторяется с периодом, равным К. Между тем, при линейной свертке полных массивов сигналов по формуле (6.2.5) размер только одной половины ВКФ составляет К точек, а полный двусторонний размер составляет 2К точек. Следовательно, при обратном БПФ с учетом цикличности свертки произойдет наложение на главный период ВКФ ее боковых периодов, как и при обычной циклической свертке двух функций. На рис приведен пример двух сигналов и значения Рис В1 линейная свертка, В2 БПФ без продления сигналов нулями, В3 БПФ с продлением сигналов нулями. ВКФ, вычисленные линейной сверткой (В1ху) и циклической сверткой через БПФ (В2ху). Для исключения эффекта наложения боковых периодов необходимо дополнить сигналы нулями, в пределе, до удвоения количества отсчетов, при этом результат БПФ (график В3ху на рисунке 6.3.5) полностью повторяет результат линейной свертки (с учетом нормировки на увеличение количества отсчетов). На практике число нулей продления сигналов зависит от характера корреляционной функции. Минимальное количество нулей обычно принимается равным значимой информационной части функций, т.е. порядка (3-5) интервалов корреляции.

12 12 с. ЛИТЕРАТУРА 1. Баскаков С.И. Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, Отнес Р., Эноксон Л. Прикладной анализ временных рядов. М.: Мир, с. 25. Сергиенко А.Б. Цифровая обработка сигналов. / Учебник для вузов. СПб.: Питер, с. 33. Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 Сайт автора ~ Лекции ~ Практикум О замеченных опечатках, ошибках и предложениях по дополнению: Copyright 2008 Davydov А.V.


Часть 5 МЕТОДЫ ОПРЕДЕЛЕНИЯ ФУНКЦИИ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ Функции спектральной плотности можно определять тремя различными эквивалентными способами которые будут рассмотрены в последующих разделах: с помощью

Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА План Тригонометрическая форма ряда Фурье Ряд Фурье в комплексной форме Комплексный частотный спектр 3 Мощности в цепях несинусоидального тока Коэффициенты,

3 ВВЕДЕНИЕ Физические процессы, рассматриваемые в инженерных задачах, описываются, в большинстве случаев, функциями времени, называемыми реализациями процесса. Существуют физические явления, будущее поведение

43 Лекция 4 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА Тригонометрическая форма ряда Фурье Комплексная форма ряда Фурье 3 Коэффициенты, характеризующие периодические несинусоидальные функции 4 Заключение

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 1 Дискретные сигналы А. Б. Сергиенко, 216 Дискретный

7. Некоторые базисные системы из l В системах с дискретным временем важное место занимают дискретные сигналы, определенные на конечных интервалах. Такие сигналы являются -мерными векторами в пространстве

43 Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА Тригонометрическая форма ряда Фурье Комплексная форма ряда Фурье 3 Коэффициенты, характеризующие периодические несинусоидальные функции 4 Заключение

ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

3 Лекция 4 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА План Тригонометрическая форма ряда Фурье Комплексная форма ряда Фурье 3 Коэффициенты, характеризующие периодические несинусоидальные функции 4 Выводы

Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Осенний семестр учебного - года Тема 3 ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ Прямое и обратное преобразования Фурье Спектральная характеристика сигнала Амплитудно-частотный и фазо-частотный спектры

Лабораторная работа 4 ИССЛЕДОВАНИЕ СПЕКТРАЛЬНОГО СОСТАВА ПЕРИОДИЧЕСКИХ НЕСИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ 4 Тригонометрическая форма ряда Фурье Если периодическая несинусоидальная функция отвечает условиям Дирихле,

Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,

Лекция Тема игналы. Определение и классификация сигналов В радиотехнических устройствах протекают электрические процессы, имеющие специфический характер. Для понимания этой специфики следует предварительно

Www.vntr.ru 6 (34), г. www.ntgcom.com УДК 57.443+57.8 ВЛИЯНИЕ СПЕКТРАЛЬНОГО ПРОСАЧИВАНИЯ НА ПОВЕДЕНИЕ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ УСЕЧЕННОГО ГАРМОНИЧЕСКОГО СИГНАЛА Г.С. Ханян Центральный институт авиационного

Тема 3 ГАРМОНИЧЕСКИЙ АНАЛИЗ НЕПЕРИОДИЧЕСКИХ СИГНАЛОВ Прямое и обратное преобразования Фурье Спектральная характеристика сигнала Амплитудно-частотный и фазо-частотный спектры Спектральные характеристики

54 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье Некоторые свойства преобразования Фурье 3 Спектральный метод

4.4. Спектральный анализ простейших колебаний. Прямоугольный импульс / / d, / s, / sin sin Спектральная плотность одиночного импульса совпадает с огибающей спектральных линий периодической последовательности

1. Основные характеристики детерминированных сигналов В технике под термином «сигнал» подразумевают величину, каким-либо образом отражающую состояние физической системы. В радиотехнике сигналом называют

Лекция 8 33 ОДНОМЕРНЫЕ СТАЦИОНАРНЫЕ СИСТЕМЫ ПРИМЕНЕНИЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ 33 Описание сигналов и систем Описание сигналов Для описания детерминированных сигналов используется преобразование Фурье: it

Спектральный анализ случайных последовательностей методом ДПФ При спектральных измерениях случайных сигналов основной целью является определение спектральной плотности мощности (СПМ) (приложение, п.4).

Методические материалы примеры билетов КР и вариантов РГР по курсу «Математические методы обработки цифровых сигналов» Рубежный контроль 1 1. Разложите вектор (,1, 1 по векторам 1) (1,2,1), (,2,3) 1,

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ А.Н.ДЕНИСЕНКО, В.Н.ИСАКОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению лабораторных работ на ПК по дисциплине «ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ»

54 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье 2 Некоторые свойства преобразования Фурье 3 Спектральный метод

Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Преобразование Фурье в оптике В математике доказывается, что периодическую функцию () с периодом Т, удовлетворяющую определенным требованиям, можно представить рядом Фурье: a a cos n b sn n, где / n, a

4. Анализ цепей при негармонических воздействиях. Практически любое реальное колебание может быть разложено в совокупность гармонических колебаний. По принципу суперпозиции действие каждой гармонической

ФГБОУ ВПО «Омский государственный технический университет» РАЗДЕЛ II НЕПРЕРЫВНЫЕ ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Лекция 4. ДИНАМИЧЕКИЕ ЗВЕНЬЯ. ОБЩИЕ ПОНЯТИЯ, ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ И ЧАСТОТНАЯ

Скалярные гиперслучайные величины 4 ЧАСТЬ І ОСНОВЫ ТЕОРИИ ГЛАВА ГИПЕРСЛУЧАЙНЫЕ СОБЫТИЯ И ВЕЛИЧИНЫ Введены понятия гиперслучайного события и гиперслучайной величины. Предложен ряд характеристик и параметров

Задача 1. Определим исходные данные: Интервал разложения равен [-τ/2;τ/2]. Число спектральных коэффициентов n=5. Амплитуда сигнала: Входной сигнал: Рис. 1. Временной график сигнала. 1 1. Запишем формулы

43 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье Некоторые свойства преобразования Фурье 3 Спектральный метод

3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

ЛЕКЦИЯ Сообщения, сигналы, помехи как случайные явления Случайные величины, вектора и процессы 4 СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ Как уже отмечалось выше основная проблематика теории РТС это

Преобразование Фурье в оптике В математике доказывается что любую периодическую функцию () с периодом Т можно представить рядом Фурье: a a cos b s где / a cos d b s d / / a и b - коэффициенты ряда Фурье

Спектральное представление сигналов к.ф.-м.н., доцент Московский государственный университет факультет ВМК кафедра Математических методов прогнозирования Спектральное представление сигналов Лекция 4 Москва,

Статистическая радиофизика и теория информации Лекция 1. 14. Синтез согласованного фильтра. Рассмотрим линейную систему на вход которой подается аддитивная смесь полезного сигнала s t и шума n t: t =

Лекция 5. 8.3. АНАЛИЗ АВТОКОЛЕБАНИЙ МЕТОДОМ ГАРМОНИЧЕСКОЙ ЛИНЕАРИЗАЦИИ 8.3.. Постановка задачи Рассматривается замкнутая система с одним нелинейным элементом. F W s x Рис. Изучается свободное движение

Глава 4. Дискретное преобразование Фурье 4.. Дискретный во времени ряд Фурье (ДВРФ) Для периодического с периодом сигнала xt () ряд Фурье в общем случае будет содержать бесконечное число членов: где коэффициенты

Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Цифровая обработка сигналов; лекция 7 марта 07 г МФТИ Z-преобразование является одним из математических методов, разработанных специально для анализа и проектирования дискретных и цифровых систем 45 Линейные

Лабораторная работа 7 Цифровой спектральный анализ: периодограммный и коррелограммный методы Цель работы: изучить способы программной реализации в системе MATLAB классических вариантов цифрового спектрального

5 УДК 656.5, 6.39.8 А. В. ВОЛЫНСКАЯ ОСОБЕННОСТИ ПРЕОБРАЗОВАНИЯ ДИСКРЕТНЫХ СИГНАЛОВ В ЦИФРОВЫХ КАНАЛАХ ПЕРЕДАЧИ ИНФОРМАЦИИ Показано, что при произвольном выборе дискретных значений сигналов (например, с

Конструирование оконных функций (продолжение п. 4) Выбор оконной функции важен для получения оценок параметров исследуемого сигнала при наличии флуктуационных помех. При обнаружении сигналов с большим

Часть 4 СПЕКТРАЛЬНЫЕ РАЗЛОЖЕНИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ 41 ИНТЕГРАЛЫ ФУРЬЕ СТИЛТЬЕСА Для спектральных разложений случайных функций пользуется интеграл Стилтьеса Поэтому приведем определение и некоторые свойства

Лекция 11 Прием непрерывных сообщений. Критерии помехоустойчивости Сообщение в общем случае представляет собой некоторый непрерывный процесс bt, который можно рассматривать как реализацию общего случайного

СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Случайные величины Функции распределения вероятностей случайных величин Простейшая модель физического эксперимента последовательность независимых опытов (испытаний

ЛЕКЦИЯ. Оценка комплексной амплитуды сигнала. Оценка времени запаздывания сигнала. Оценка частоты сигнала со случайной фазой. Совместная оценка времени запаздывания и частоты сигнала со случайной фазой.

3 Случайные процессы в автоматических системах управления 3 Введение Системы, сигналы в которых характеризуются случайными функциями и процессами называются системами с случайными сигналами или стохастическими

Глава 8 Функции и графики Переменные и зависимости между ними. Две величины и называются прямо пропорциональными, если их отношение постоянно, т. е. если =, где постоянное число, не меняющееся с изменением

Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования Поволжский государственный университет телекоммуникаций и информатики кафедра ТОРС Задание и методические

Лекция 10. Алгоритм Шредингера определения термов и орбиталей стационарных состояний 1 Стационарные состояния Если состояние системы не изменяется со временем и осуществляется при постоянном значении полной

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ «СЛУЧАЙНЫЕ ПРОЦЕССЫ В РАДИОТЕХНИКЕ» ДЛЯ СТУДЕНТОВ ГРУППЫ ВДБВ-6-14 Список литературы 1. Статистический анализ и синтез радиотехнических устройств и систем:

Тема 8 ЛИНЕЙНЫЕ ДИСКРЕТНЫЕ СИСТЕМЫ Понятие дискретной системы Методы описания линейных дискретных систем: разностное уравнение, передаточная функция, импульсная характеристика, частотная передаточная функция

Лекция 6 ( стр 358-36) Дискретное преобразование Фурье (ДПФ) Прямое Z преобразование Определение прямого и обратного дискретного преобразования Фурье Рассмотрим алгоритм вычисления преобразования Фурье

Вариант 8 Найти область определения функции: y sin Область определения данной функции определяется двумя неравенствами: и sin Из второго неравенства следует, что должно выполняться неравенство k π k+

Спектральный анализ и синтез Цифровой звук и видео Лекция 2 2 Анализ и синтез Фурье процесс разложения сложного периодического сигнала на простые гармонические составляющие называется анализом Фурье или

Signals and linear systems. Correlation of signals

Тема 6. Корреляция сигналов

Предельный страх и предельный пыл храбрости одинаково расстраивают желудок и вызывают понос.

Мишель Монтень. Французский юрист-мыслитель, XVI в.

Вот это номер! Две функции имеют стопроцентную корреляцию с третьей и ортогональны друг другу. Ну и шуточки были у Всевышнего при сотворении Мира.

Анатолий Пышминцев. Новосибирский геофизик Уральской школы, ХХ в.

1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов.

2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов.Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов.

3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ.

Введение

Корреляция (correlation), и ее частный случай для центрированных сигналов – ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т.е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений.

В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов.

Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов.

Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" – к произвольным. В технической литературе, и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов.

Корреляционная функция сигнала – это временная характеристика,

дающая представление о скорости изменения сигнала во времени, а также о длительности сигнала без разложения его на гармонические составляющие.

Различают автокорреляционную и взаимнокорреляционную функции. Для детерминированного сигнала f (t ) автокорреляционная функция определяется выражением

где – величина временного сдвига сигнала.

характеризует степень связи(корреляции) сигнала f (t ) со своей

копией, сдвинутой на величину по оси времени. Построим автокорреляционную функцию (АКФ) для прямоугольного импульса f (t ) . Сигнал сдвинут на в сторону опережения, как показано на рис. 6.25.

На графике каждому значению соответствует свое произведение и площадь под графиком функции . Численные

значения таких площадей для соответствующих τ и дают ординаты функции

С увеличением τ убывает (не обязательно монотонно) и при

Т. е. больше, чем длительность сигнала, равна нулю.

– периодический сигнал, то АКФ K f (t ) =

f (t ) × f t(+ t ) dt и

является также периодической функцией с периодом T .

Рассмотрим основные свойства автокорреляционной функции:

1. АКФ является четной функцией , т. е. и с увеличением функция убывает.

2. АКФ достигает max при , так как любой сигнал полностью коррелирован с самим собой. При этом максимальное значение АКФ равно энергии

сигнала, т. е.

E = K f (0 ) = ò f 2 (t ) dt . Для периодического сигнала

средняя мощность сигнала.

и квадрат модуля спектральной плотности

между собой прямым и обратным преобразованием Фурье.

Чем шире спектр сигнала, тем меньше интервал корреляции, т.е. величина сдвига , в пределах которого корреляционная функция отлична от нуля. Соответственно, чем больше интервал корреляции сигнала, тем уже его спектр.

Корреляционная функция может быть использована и для оценки степени связи между двумя различными сигналами f 1 (t ) и f 2 (t ) сдвинутыми на время

В этом случае она называется взаимной корреляционной функцией(ВКФ) и определяется выражением:

Взаимно-корреляционная функция не обязательно является чётной относительно τ и не обязательно достигает максимума при. Построение ВКФ для двух треугольных сигналов f 1 (t ) и f 2 (t ) приведено на рис. 6.26. При сдвиге

сигнала f 2 (t ) влево (t > 0, рис. 6.26, а) корреляционная функция сигнала сначала возрастает, затем убывает до нуля при. При сдвиге сигнала f 2 (t ) вправо (t < 0, рис. 6.26, б) корреляционная функция сразу убывает. В результате получается нессиметричная относительно оси ординат ВКФ , показанная на рис. 6.26, в.

f1 (t)

f2 (t)

0 Т t

0 t -Т Т

f 1 (t ) × f 2 (t + t)

f1 (t)

f2 (t)

0 Т

Т Т + t

f 1 (t ) × f 2 (t - t)

6.9. Понятие о модулированных сигналах. Амплитудная модуляция

Для передачи информации на расстояние применяются высокочастотные сигналы. Передаваемая информация должна быть тем или иным способом -за ложена в высокочастотное колебание, которое называется несущим. Выбор ча-

стоты ω несущего сигнала зависит от многих факторов, но в любом случае ω

должна быть намного больше, чем наивысшая частота спектра передаваемого сообщения, т. е.

В зависимости от характера несущей различают два вида модуляции:

непрерывную – при гармоническом непрерывном во времени переносчике;

импульсную – при переносчике в виде периодической последовательности импульсов.

Сигнал, несущий в себе информацию, можно представить в виде

Если и – постоянные величины, то это простое гармоническое колебание, не несущее информации. Если и подвергаются принудительному изменению для передачи сообщения, то колебание становится модулированным.

Если изменяется A (t ), то это амплитудная модуляция, если угол – угловая. Угловая модуляция подразделяется на два вида: частотную (ЧМ) и фазовую (ФМ).

Так как , то и – медленно меняющиеся функции времени. Тогда можно считать, что при любом виде модуляции параметры сигнала

(1) (амплитуда, фаза и частота) изменяются настолько медленно, что в пределах одного периода высокочастотное колебание можно считать гармоническим. Эта предпосылка лежит в основе свойств сигналов и их спектров.

Амплитудная модуляция (АМ). При АМ огибающая амплитуд несущего сигнала изменяется по закону, совпадающему с законом изменения передаваемого сообщения, частота не изменяется, а начальная фаза может быть различной в зависимости от момента начала модуляции. Общее выражение (6.22) можно заменить на

Графическое представление амплитудно-модулирован-ного сигнала приведено на. 6.27. Здесь S (t ) – передаваемое непрерывное сообщение, амплитуда несущего гармонического ы- сокочастотного сигнала. Огибающая A (t ) изменяется по закону, воспроизводящему сообщение

S (t ).

Наибольшее, причём . – частота модулирующей функции, – начальная фаза огибающей. Такая модуляция называ-

ется тональной (6.28).

повторяет закон изменения исходного сигнала (рис. 6.28, б).

Понятие корреляция означает схожесть. Корреляционная функция сигнала является функцией и определяется выражением

где τ – временной сдвиг сигнала.

При выражение (2.65) принимает вид

где Е - энергия сигнала. Таким образом, при нулевом временном сдвиге корреляционная функция равна энергии сигнала.

Кроме корреляционной функции (2.65) существует взаимно корреляционная функция, которая характеризует взаимную связь между значениями двух сигналов и определяется выражением:

Когда U1(t) и U2(t) являются одним и тем же сигналом U(t), то взаимно корреляционная и корреляционная функция совпадают.

Корреляционная функция принимает максимальное значение только при . Взаимно корреляционная функция двух одинаковых сигналов также достигает максимума при . Для различных сигналов U1(t) и U2(t) максимальное значение функции может достигать не при . Например, взаимно корреляционная функция косинусоиды имеет максимальное значение при .

Рассмотрим корреляционные функции типовых сигналов.

Прямоугольный видеосигнал и его корреляционная функция показаны на рис. 2.24.

Корреляционная функция периодического видеосигнала с периодом Т на основании (2.66) имеет вид:

(2.67)

Корреляционная функция гармонического сигнала равна:

Сигнал и его корреляционная функция показаны на рис 2.25.

Рис. 2.25. Гармонический сигнал (а) и его корреляционная функция (б).

Взаимно корреляционная функция двух гармонических сигналов одинаковой частоты и имеет вид:

(2.69)

Если и , то взаимно корреляционная функция (2.68) равна корреляционной функции гармонического сигнала (2.69).

Взаимно корреляционная функция двух гармонических сигналов с различными частотами равна нулю. Следовательно, гармонические сигналы с различными частотами являются некоррелированными (не схожими) между собой.

На ранних этапах развития радиотехники вопрос о выборе наилучших сигналов для тех или иных конкретных применений не был очень острым. Это обусловливалось, с одной стороны, относительно простой структурой передаваемых сообщений (телеграфные посылки, радиовещание); с другой, практическая реализация сигналов сложной формы в комплексе с оборудованием для их кодирования, модуляции и обратного преобразования в сообщение оказывалась трудно осуществимой.

В настоящее время ситуация в корне изменилась. В современных радиоэлектронных комплексах выбор сигналов диктуется прежде всего не техническими удобствами их генерирования, преобразования и приема, а возможностью оптимального решения задач, предусмотренных при проектировании системы. Для того чтобы понять, как возникает потребность в сигналах со специально выбранными свойствами, рассмотрим следующий пример.

Сравнение сигналов, сдвинутых во времени.

Обратимся к упрощенной идее работы импульсного радиолокатора, предназначенного для измерения дальности до пели. Здесь информация об объекте измерения заложена в величине - задержке по времени между зондирующим и принятым сигналами. Формы зондирующего и и принятого и сигналов одинаковы при любых задержках.

Структурная схема устройства обработки радиолокационных сигналов, предназначенного для измерения дальности, может выглядеть так, как это изображено на рис. 3,3.

Система состоит из набора элементов, осуществляющих задержку «эталонного» передаваемого сигнала на некоторые фиксированные отрезки времени

Рис. 3.3. Устройство для измерения времени задержки сигналов

Задержанные сигналы вместе с принятым сигналом подаются на устройства сравнения, действующие в соответствии с принципом: сигнал на выходе появляется лишь при условии, что оба входных колебания являются «копиями» друг друга. Зная номер канала, в котором происходит указанное событие, можно измерить задержку, а значит, и дальность до цели.

Подобное устройство будет работать тем точнее, чем в большей степени разнятся друг от друга сигнал и его «копия», смещенная во времени.

Таким образом, мы получили качественное «представление о том, какие сигналы можно считать «хорошими» для данного применения.

Перейдем к точной математической формулировке поставленной проблемы и покажем, что этот круг вопросов имеет непосредственное отношение к теории энергетических спектров сигналов.

Автокорреляционная функция сигнала.

Для количественного определения степени отличия сигнала и и его смещенной во времени копии принято вводить автокорреляционную функцию (АКФ) сигнала , равную скалярному произведению сигнала и копии:

В дальнейшем будем предполагать, что исследуемый сигнал имеет локализованный во времени импульсный характер, так что интеграл вида (3.15) заведомо существует.

Непосредственно видно, что при автокорреляционная функция становится равной энергии сигнала:

К числу простейших свойств АКФ можно отнести ее четность:

Действительно, если в интеграле (3.15) сделать замену переменных то

Наконец, важное свойство автокорреляционной функции состоит в следующем: при любом значении временного сдвига модуль АКФ не превосходит энергии сигнала:

Этот факт непосредственно вытекает из неравенства Коши - Буняковского (см. гл. 1):

Итак, АКФ представляется симметричной кривой с центральным максимумом, который всегда положителен. При этом в зависимости от вида сигнала автокорреляционная функция может иметь как монотонно убывающий, так и колеблющийся характер.

Пример 3,3. Найти АКФ прямоугольного видеоимпульса.

На рис. 3.4,а изображен прямоугольный видеоимпульс с амплитудой U и длительностью Здесь же представлена его «копия», сдвинутая во времени в сторону запаздывания на . Интеграл (3.15) вычисляется в данном случае элементарно на основании графического построения. Действительно, произведение и и отлично от нуля лишь в пределах интервала времени, когда наблюдается наложение сигналов. Из рис. 3.4, о видно, что этот временной интервал равен если сдвиг не превышает длительности импульса. Таким образом, для рассматриваемого сигнала

График такой функции - треугольник, изображенный на рис. 3.4,б. Ширина основания треугольника в два раза больше длительности импульса.

Рис. 3.4. Нахождение АКФ прямоугольного видеоимпульса

Пример 3.4. Найти АКФ прямоугольного радиоимпульса.

Будем рассматривать радиосигнал вида

Зная заранее, что АКФ четна, вычислим интеграл (3.15), полагая . При этом

откуда легко получаем

Естественно, что при величина становится равной энергии этого импульса (см. пример 1.9). Формула (3.21) описывает АКФ прямоугольного радиоимпульса при всех сдвигах , лежащих в пределах Если абсолютное значение сдвига превышает длительность импульса, то автокорреляционная функция будет тождественно обращаться в нуль.

Пример 3.5. Определить АКФ последовательности прямоугольных видеоимпульсов.

В радиолокации широко используются сигналы, представляющие собой пачки из одинаковых по форме импульсов, следующих друг за другом через одинаковый интервал времени. Для обнаружения такой пачки, а также для измерения ее параметров, например положения во времени, создают устройства, которые аппаратурным образом реализуют алгоритмы вычисления АКФ.

Рис. 3.5. АКФ пачки из трех одинаковых видеоимпульсов: а - пачка импульсов; б - график АКФ

На рис. 3.5, в изображена пачка, состоящая из трех одинаковых видеоимпульсов прямоугольной формы. Здесь же представлена ее автокорреляционная функция, вычисленная по формуле (3.15) (рис. 3.5, б).

Хорошо видно, что максимум АКФ достигается при Однако если задержка оказывается кратной периоду последовательности (при в нашем случае), наблюдаются побочные лепестки АКФ, сравнимые по высоте с главным лепестком. Поэтому можно говорить об известном несовершенстве корреляционной Структуры данного сигнала.

Автокорреляционная функция неограниченно протяженного сигнала.

Если требуется рассматривать неограниченно протяженные во времени периодические последовательности, то подход к изучению корреляционных свойств сигналов должен быть несколько видоизменен.

Будем считать, что такая последовательность получается из некоторого локализованного во времени, т. е. импульсного, сигнала, когда длительность последнего стремится к бесконечности. Для того чтобы избежать расходимости получаемых выражений, определим иовую АКФ как среднее значение скалярного произведения сигнала и его копии:

При таком подходе автокорреляционная функция становится равной средней взаимной мощности этих даух сигналов.

Например, желая найти АКФ для неограниченной во времени косинусоиды можно воспользоваться формулой (3.21), полученной для радиоимпульса длительностью а затем перейти к пределу при учитывая определение (3.22). В результате получим

Эта АКФ сама является периодической функцией; ее значение при равно

Связь между энергетическим спектром сигнала и его автокорреляционной функцией.

При изучении материала настоящей главы читатель может подумать, что методы корреляционного анализа выступают как некоторые особые приемы, не имеющие связи с принципами спектральных разложений. Однако это не так. Легко показать, что существует тесная связь между АКФ и энергетическим спектром сигнала.

Действительно, в соответствии с формулой (3.15) АКФ есть скалярное произведение: Здесь символом обозначена смещенная во времени копия сигнала и ,

Обратившись к обобщенной формуле Рэлея (2.42), можно записать равенство

Спектральная плотность смещенного во времени сигнала

Таким образом, приходим к результату:

Квадрат модуля спектральной плотности, как известно, представляет собой энергетический спектр сигнала. Итак, энергетический спектр и автокорреляционная функция связаны преобразованием Фурье:

Ясно, что имеется и обратное соотношение:

Эти результаты принципиально важны по двум причинам. Во-первых, оказывается возможным оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Чем шире полоса частот сигнала, тем уже основной лепесток автокорреляционной функции и тем совершеннее сигнал с точней зрения возможности точного измерения момента его начала.

Во-вторых, формулы (3.24) и (3.26) указывают путь экспериментального определения энергетического спектра. Часто удобнее вначале получить автокорреляционную функцию, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Такой прием получил распространение при исследовании свойств сигналов с помощью быстродействующих ЭВМ в реальном масштабе времени.

Соотношением совтк Отсюда следует, что интервал корреляции

оказывается тем меньше, чем выше верхняя граничная частота спектра сигнала.

Ограничения, накладываемые на вид автокорреляционной функции сигнала.

Найденная связь между автокорреляционной функцией и энергетическим спектром дает возможность установить интересный и на первый взгляд неочевидный критерий существования сигнала с заданными корреляционными свойствами. Дело в том, что энергетический спектр любого сигнале, по определению, должен быть положительным [см. формулу (3.25)]. Данное условие будет выполняться далеко не при любом выборе АКФ. Например, если взять

и вычислить соответствующее преобразование Фурье, то

Эта знакопеременная функция не может представлять собой энергетический спектр какого-либо сигнала.